Your search
MACHINE LEARNING
Results
45 resources
Borchert, T. (2019). amzn/milan. Amazon. Retrieved from https://github.com/amzn/milan (Original work published 2019)

Murfet, D. (2019). dmurfet/2simplicialtransformer. Retrieved from https://github.com/dmurfet/2simplicialtransformer (Original work published 2019)

Hamrick, J. B. (2019). Analogues of mental simulation and imagination in deep learning. Current Opinion in Behavioral Sciences, 29, 8–16. https://doi.org/10.1016/j.cobeha.2018.12.011

Murfet, D., Clift, J., Doryn, D., & Wallbridge, J. (2019). Logic and the $2$Simplicial Transformer. ArXiv:1909.00668 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1909.00668

Winn, J. M. (2019). ModelBased Machine Learning. Taylor & Francis Incorporated.

Harris, K. D. (2019). Characterizing the invariances of learning algorithms using category theory. ArXiv:1905.02072 [Cs, Math, Stat]. Retrieved from http://arxiv.org/abs/1905.02072

Fong, B., Spivak, D. I., & Tuyéras, R. (2019). Backprop as Functor: A compositional perspective on supervised learning. ArXiv:1711.10455 [Cs, Math]. Retrieved from http://arxiv.org/abs/1711.10455

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., & Zhou, D. (2019). Neural Logic Machines. ArXiv:1904.11694 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1904.11694

Murfet, D., & Clift, J. (2019). Derivatives of Turing machines in Linear Logic. ArXiv:1805.11813 [Math]. Retrieved from http://arxiv.org/abs/1805.11813

Sprunger, D., & Katsumata, S. (2019). Differentiable Causal Computations via Delayed Trace. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (pp. 1–12). Vancouver, BC, Canada: IEEE. https://doi.org/10/ggdf98

Jacobs, B. (2018). Categorical Aspects of Parameter Learning. ArXiv:1810.05814 [Cs]. Retrieved from http://arxiv.org/abs/1810.05814

Murfet, D. (2018). dmurfet/deeplinearlogic. Retrieved from https://github.com/dmurfet/deeplinearlogic (Original work published 2016)

Battaglia, P. W., Hamrick, J. B., Bapst, V., SanchezGonzalez, A., Zambaldi, V., Malinowski, M., … Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. ArXiv:1806.01261 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1806.01261

Brown, T. B., Mané, D., Roy, A., Abadi, M., & Gilmer, J. (2018). Adversarial Patch. ArXiv:1712.09665 [Cs]. Retrieved from http://arxiv.org/abs/1712.09665

Murfet, D. (2018). dmurfet/polysemantics. Retrieved from https://github.com/dmurfet/polysemantics (Original work published 2016)

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., … Song, D. (2018). Robust PhysicalWorld Attacks on Deep Learning Models. ArXiv:1707.08945 [Cs]. Retrieved from http://arxiv.org/abs/1707.08945

Jacobs, B., & Sprunger, D. (2018). Neural Nets via Forward State Transformation and Backward Loss Transformation. ArXiv:1803.09356 [Cs]. Retrieved from http://arxiv.org/abs/1803.09356

MartinMaroto, F., & de Polavieja, G. G. (2018). Algebraic Machine Learning. ArXiv:1803.05252 [Cs, Math]. Retrieved from http://arxiv.org/abs/1803.05252

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: a survey. ArXiv:1502.05767 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1502.05767

Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017). Deep Probabilistic Programming. ArXiv:1701.03757 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1701.03757
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
 Biology (2)
 Neuroscience (3)
CATEGORICAL LOGIC
 Effectus theory (2)
 Linear logic (4)
DIFFERENTIAL CALCULUS
 Differentiation (3)
MACHINE LEARNING

Machine Learning
 Adversarial attacks (5)
 Algebraic ML (8)
 Categorical ML (14)
 Classic ML (21)
MODEL CHECKING AND STATE MACHINES
 Symbolic logic (3)
 Transition systems (7)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
 Compendium (2)
 Implementation (7)
 Sketchy (4)
Topic
 Abstract machines (7)
 Adversarial attacks (5)
 Algebra (7)
 Automatic differentiation (1)
 Bayesian inference (3)
 Bayesianism (7)
 Biology (1)
 Categorical ML (12)
 Categorical probability theory (4)
 Classical ML (19)
 Compendium (2)
 Differentiation (3)
 Effectus theory (2)
 Implementation (7)
 Linear logic (4)
 Machine learning (32)
 Neuroscience (1)
 Probabilistic programming (3)
 Programming language theory (2)
 Purely theoretical (5)
 Semantics (6)
 Sketchy (1)
 Statistical learning theory (2)
 Symbolic logic (3)
 Systems biology (1)
Resource type
 Book (2)
 Book Section (2)
 Computer Program (4)
 Conference Paper (4)
 Journal Article (29)
 Presentation (3)
 Web Page (1)
Publication year
 Between 1900 and 1999 (3)
 Between 2000 and 2020 (39)
 Unknown (3)