Search
Full bibliography
146 resources
Keimel, K., & Plotkin, G. D. (2017). Mixed powerdomains for probability and nondeterminism. ArXiv:1612.01005 [Cs]. https://doi.org/10/ggdmrp

Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl  LeibnizZentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc

Hess, K., Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., … Markram, H. (2017). Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function. Frontiers in Computational Neuroscience, 11. https://doi.org/10/gdjbfn

Sizemore, A., Giusti, C., Kahn, A., Betzel, R. F., & Bassett, D. S. (2016). Cliques and Cavities in the Human Connectome. ArXiv:1608.03520 [Math, qBio]. Retrieved from http://arxiv.org/abs/1608.03520

Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb

Olah, C., & Carter, S. (2016). Attention and Augmented Recurrent Neural Networks. Distill, 1(9), e1. https://doi.org/10/gf33sg

Serafini, L., & Garcez, A. d’Avila. (2016). Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge. ArXiv:1606.04422 [Cs]. Retrieved from http://arxiv.org/abs/1606.04422

Ehrhard, T. (2016). An introduction to Differential Linear Logic: proofnets, models and antiderivatives. ArXiv:1606.01642 [Cs]. Retrieved from http://arxiv.org/abs/1606.01642

Tsuchiya, N., Taguchi, S., & Saigo, H. (2016). Using category theory to assess the relationship between consciousness and integrated information theory. Neuroscience Research, 107, 1–7. https://doi.org/10/ggdf95

Hess, K., Kanari, L., Dłotko, P., Scolamiero, M., Levi, R., Shillcock, J., & Markram, H. (2016). Quantifying topological invariants of neuronal morphologies. ArXiv:1603.08432 [Cs, Math, qBio]. Retrieved from http://arxiv.org/abs/1603.08432

Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higherorder functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science  LICS ’16, 525–534. https://doi.org/10/ggdf97

Cho, K., Jacobs, B., Westerbaan, B., & Westerbaan, A. (2015). An Introduction to Effectus Theory. ArXiv:1512.05813 [QuantPh]. Retrieved from http://arxiv.org/abs/1512.05813

Ehresmann, A. C., & GomezRamirez, J. (2015). Conciliating neuroscience and phenomenology via category theory. Progress in Biophysics and Molecular Biology, 119(3), 347–359. https://doi.org/10/f75jzr

Jacobs, B., & Adams, R. (2015). A Type Theory for Probabilistic and Bayesian Reasoning. ArXiv:1511.09230 [Cs, Math]. Retrieved from http://arxiv.org/abs/1511.09230

Jacobs, B., & Furber, R. (2015). Towards a Categorical Account of Conditional Probability. Electronic Proceedings in Theoretical Computer Science, 195, 179–195. https://doi.org/10/ggdf9w

Jacobs, B. (2015). New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic. Logical Methods in Computer Science, 11(3), 24. https://doi.org/10/ggdf99

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and Harnessing Adversarial Examples. ArXiv:1412.6572 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1412.6572

Paul, A., & Venkatasubramanian, S. (2015). Why does Deep Learning work?  A perspective from Group Theory. ArXiv:1412.6621 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1412.6621

Ścibior, A., Ghahramani, Z., & Gordon, A. D. (2015). Practical Probabilistic Programming with Monads. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell (pp. 165–176). New York, NY, USA: ACM. https://doi.org/10/gft39z

Hur, C.K., Nori, A. V., & Rajamani, S. K. (2015). A Provably Correct Sampler for Probabilistic Programs, 21.
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
 Biology (29)
 Neuroscience (16)
 Psychology (6)
CATEGORICAL LOGIC
 Effectus theory (8)
 Linear logic (21)
DIFFERENTIAL CALCULUS
 Differentiation (18)
MACHINE LEARNING
 Machine Learning (45)
MODEL CHECKING AND STATE MACHINES
 Coalgebras (8)
 Rewriting theory (9)
 Symbolic logic (7)
 Transition systems (22)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
 Programming language theory (59)
 Type theory (6)
Methodology
 Compendium (4)
 Implementation (23)
 Sketchy (18)
Topic
 Abstract machines (8)
 Adversarial attacks (5)
 Algebra (7)
 Automatic differentiation (7)
 Bayesian inference (12)
 Bayesianism (15)
 Biology (18)
 Categorical ML (12)
 Categorical probability theory (16)
 Classical ML (19)
 Coalgebras (8)
 Coherence spaces (4)
 Compendium (4)
 Denotational semantics (21)
 Differential Linear Logic (8)
 Differentiation (18)
 Effectus theory (8)
 Emergence (13)
 Game semantics (3)
 Implementation (20)
 Interactive semantics (5)
 Linear logic (18)
 Machine learning (32)
 Neuroscience (13)
 Powerdomains (4)
 Probabilistic programming (29)
 Probabilistic transition systems (7)
 Programming language theory (32)
 Psychology (6)
 Purely theoretical (8)
 Rewriting theory (9)
 Semantics (11)
 Sketchy (14)
 Statistical learning theory (2)
 Symbolic logic (7)
 Systems biology (8)
 Topological data analysis (4)
 Transition systems (10)
 Type theory (2)
Resource type
 Blog Post (1)
 Book (5)
 Book Section (6)
 Computer Program (4)
 Conference Paper (25)
 Journal Article (98)
 Manuscript (1)
 Presentation (5)
 Web Page (1)
Publication year
 Between 1900 and 1999 (13)
 Between 2000 and 2020 (128)
 Unknown (5)