Your search
Topic
Results
19 resources
Winn, J. M. (2019). ModelBased Machine Learning. Taylor & Francis Incorporated.

Brown, T. B., Mané, D., Roy, A., Abadi, M., & Gilmer, J. (2018). Adversarial Patch. ArXiv:1712.09665 [Cs]. Retrieved from http://arxiv.org/abs/1712.09665

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., … Song, D. (2018). Robust PhysicalWorld Attacks on Deep Learning Models. ArXiv:1707.08945 [Cs]. Retrieved from http://arxiv.org/abs/1707.08945

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: a survey. ArXiv:1502.05767 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1502.05767

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep learning requires rethinking generalization. ArXiv:1611.03530 [Cs]. Retrieved from http://arxiv.org/abs/1611.03530

Kurakin, A., Goodfellow, I., & Bengio, S. (2017). Adversarial examples in the physical world. ArXiv:1607.02533 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1607.02533

Olah, C., & Carter, S. (2016). Attention and Augmented Recurrent Neural Networks. Distill, 1(9), e1. https://doi.org/10/gf33sg

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and Harnessing Adversarial Examples. ArXiv:1412.6572 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1412.6572

Paul, A., & Venkatasubramanian, S. (2015). Why does Deep Learning work?  A perspective from Group Theory. ArXiv:1412.6621 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1412.6621

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10/gdxwhq

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing Machines. ArXiv:1410.5401 [Cs]. Retrieved from http://arxiv.org/abs/1410.5401

Goodfellow, I. J., PougetAbadie, J., Mirza, M., Xu, B., WardeFarley, D., Ozair, S., … Bengio, Y. (2014). Generative Adversarial Networks. ArXiv:1406.2661 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1406.2661

Poggio, T. (2013). Tomaso A. Poggio autobiography (p. 54). Retrieved from http://poggiolab.mit.edu/sites/default/files/cv/tomasopoggio.pdf

Fages, F., Calzone, L., ChabrierRivier, N., & Soliman, S. (2006). Machine Learning Biochemical Networks from Temporal Logic Properties. In C. Priami & G. Plotkin (Eds.), Transactions on Computational Systems Biology VI (pp. 68–94). Berlin, Heidelberg: Springer. https://doi.org/10/dd8

Wermuth, N., & Cox, D. R. (2001). Graphical Models: Overview. In N. J. Smelser & P. B. Baltes (Eds.), International Encyclopedia of the Social & Behavioral Sciences (pp. 6379–6386). Oxford: Pergamon. https://doi.org/10.1016/B0080430767/00440X

Heckerman, D. (1995). A Tutorial on Learning With Bayesian Networks. Retrieved from https://www.microsoft.com/enus/research/publication/atutorialonlearningwithbayesiannetworks/

Siegelmann, H. T., & Sontag, E. D. (1995). On the Computational Power of Neural Nets. Journal of Computer and System Sciences, 50(1), 132–150. https://doi.org/10/dvwtc3

Murfet, D. (n.d.). Mathematics of AlphaGo.

Murfet, D. (n.d.). Algebra and Artiﬁcial Intelligence.
Explore
BIOLOGY, NEUROSCIENCE & PSYCHOLOGY
 Biology (1)
DIFFERENTIAL CALCULUS
 Differentiation (1)
MACHINE LEARNING
 Machine Learning (19)
MODEL CHECKING AND STATE MACHINES
 Symbolic logic (1)
 Transition systems (2)
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
 Compendium (1)
 Implementation (2)
 Sketchy (1)
Topic
 Abstract machines (2)
 Adversarial attacks (5)
 Algebra (1)
 Automatic differentiation (1)
 Bayesian inference (2)
 Bayesianism (2)
 Biology (1)
 Classical ML
 Compendium (1)
 Differentiation (1)
 Implementation (2)
 Machine learning (18)
 Probabilistic programming (1)
 Sketchy (1)
 Symbolic logic (1)
 Systems biology (1)
Resource type
 Book (1)
 Book Section (2)
 Conference Paper (1)
 Journal Article (13)
 Presentation (2)
Publication year
 Between 1900 and 1999 (2)
 Between 2000 and 2020 (15)
 Unknown (2)