Your search
Topic
Results
11 resources
Murfet, D. (2019). dmurfet/2simplicialtransformer. Retrieved from https://github.com/dmurfet/2simplicialtransformer (Original work published 2019)

Murfet, D., Clift, J., Doryn, D., & Wallbridge, J. (2019). Logic and the $2$Simplicial Transformer. ArXiv:1909.00668 [Cs, Stat]. Retrieved from http://arxiv.org/abs/1909.00668

Murfet, D. (2018). dmurfet/deeplinearlogic. Retrieved from https://github.com/dmurfet/deeplinearlogic (Original work published 2016)

Murfet, D. (2018). dmurfet/polysemantics. Retrieved from https://github.com/dmurfet/polysemantics (Original work published 2016)

Staton, S. (2017). Commutative Semantics for Probabilistic Programming. In H. Yang (Ed.), Programming Languages and Systems (Vol. 10201, pp. 855–879). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/9783662544341_32

Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning. Schloss Dagstuhl  LeibnizZentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany. https://doi.org/10/ggdgbc

Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning. Electronic Notes in Theoretical Computer Science, 325, 185–200. https://doi.org/10/ggdgbb

Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higherorder functions, continuous distributions, and soft constraints. Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science  LICS ’16, 525–534. https://doi.org/10/ggdf97

Ehrhard, T., Tasson, C., & Pagani, M. (2014). Probabilistic coherence spaces are fully abstract for probabilistic PCF. In Proceedings of the 41st ACM SIGPLANSIGACT Symposium on Principles of Programming Languages  POPL ’14 (pp. 309–320). San Diego, California, USA: ACM Press. https://doi.org/10/ggdf9x

Ehrhard, T., & Danos, V. (2011). Probabilistic coherence spaces as a model of higherorder probabilistic computation. Information and Computation, 209(6), 966–991. https://doi.org/10/ctfch6

Murfet, D., & Hu, H. (n.d.). Linear logic and deep learning.
Explore
CATEGORICAL LOGIC
 Effectus theory (1)
 Linear logic (5)
MACHINE LEARNING
 Machine Learning (6)
MODEL CHECKING AND STATE MACHINES
PROBABILITY & STATISTICS
PROGRAMMING LANGUAGES
Methodology
 Implementation (3)
Topic
 Abstract machines (2)
 Algebra (2)
 Bayesianism (4)
 Categorical ML (4)
 Categorical probability theory (2)
 Coherence spaces (2)
 Effectus theory (1)
 Implementation (3)
 Linear logic (3)
 Machine learning (5)
 Probabilistic programming (4)
 Programming language theory (6)
 Semantics
Resource type
 Book Section (1)
 Computer Program (3)
 Conference Paper (1)
 Journal Article (5)
 Presentation (1)
Publication year
 Between 2000 and 2020 (10)
 Unknown (1)